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S T A B I L I T Y  O F  R O U G H L Y  D I S P E R S E  V E R T I C A L  F L O W S  

Sh.K. Kapbasov UDC 532.546 

Conditions have been found for neutral stability of vertical flows of suspended large particles. Characteristics 
of disturbances with a maximum growth increment in the instability region are considered. 

Because of the nonlinear relation between the force of hydrodynamic interaction and local concentration, 
the fluctuation motion of disperse systems can retard the growth of the amplitude of kinematic waves arising in the 
medium. In the range of moderate concentrations the shock viscosity in a system of large particles does not give 

rise to a parametric region of stability, which stimulates naturally the formation of concentration discontinuities in 
the suspension and the appearance of gas cavities in the solid phase during fluidization [1-3 ]. Such properties of 
gas suspensions were studied in experiments and even under conditions where the effect of developing instability 

of the initially homogeneous flow was mainly one-dimensional [4 ]. Manwhile, some especially urgent problems that 

have great practical importance, including the scale effect, remain little studied. The scale effect is associated with 
the phenomenon of increasing instability in industrial installations with geometry similar to that of laboratory 

facilities. Attempts to investigate these problems have been made, but the reported agreement between theory and 
experiment was explained using empirical constants and relations. Meanwhile, the lack of a reliable rheological 
model greatly reduces substantially the possibility of using calculations which are often significant for a rather 

narrow range of parameters characterizing the flow [7 ]. 
In the present work, stability of vertical flows is considered in a wide range of these parameters within the 

theory suggested in [8, 9 ]. Rheological properties and characteristics of a disperse flow are developed under the 

action of random fluctuations of colliding particles such as these taking place in molecular gases. In this case the 
vertical flow of the system of particles is governed by the ordinary conservation equations [8 ]. Adding the mass 
equation for the liquid phase to them and neglecting relatively small additions to the complete phase flows caused 

by fluctuations as well as by fluctuation energy transfer and energy dissipation in collisions of the particles, we 

can write 

O P + O ( P W ) = o "  OP-O(eV)=o"  e = l - p ,  (1) 
Ot Ox ' Ot Ox ' 

p w = - o x  + 

xa - e  1 -  g+ x +P ~ +  Ox w , 
dl (2) 

x -  do,  
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3 ( 0  0 ) P1 Ow uK(p)  vrff(xl-~_X[-~) (3) 
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Here v and w are the average velocities of the liquid and particles; p is the average volume concentration of the 
particles in the flow; do, dl are the densities of the liquid and particle material; 0 is the effective temperature of 

Ural State University, Ekaterinburg, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 68, No. 
4, pp. 542-551, July-August, 1995. Original article submitted December 29, 1993. 

442 1062-0125/95/6804-0442512.50 @1996 Plenum Publishing Corporation 



the pseudogas of particles; P1 and/z I are the normal stress and the dynamic viscosity of the system of suspended 

particles. 

By analogy with [10 ], the momentum equation for the continuous phase containing a new unknown variable 

(pressure in the liquid) which is absent in Eqs. (1)-(3), can be neglected in the stability analysis. 

The average force of interaction between the particles in unit volume of the mixture with liquid comprises 

the force of hydraulic interaction, the gravity force including the buyancy effect, and the buoyancy force caused 

by accelerated motion of the particles, where the quadratic law is assumed for the hydraulic force of the interphase 

interaction [9 ]: 

do 
nf  = a p  K (p) uu.  

Components of the effect of associated mass and the Faxen effect are neglected because of their smallness 

in comparison with these forces. It should be noted that this is not suitable for suspensions of relatively small 

particles, where the effect of the intertial force due to the effect of the associated mass is quite substantial. In the 

present work this situation is not considered as it only concerns a system of large particles. 
According to [8 ] the rheological closing of the system of equations (1)-(3) can be expressed in the form 

P1 
dl - / o  G (t9) 0 ,  (4) 

if_L= dl 4p (y-1 + 0.8 + 0.76y)kt0, 
(5) 

y = G ( p ) -  1, 

5 /2 kt0 = ~-~ a (~ 0) I 

The function G(p) describing steric interaction of the panicles can be expressed in two versions, first by 

Carnahan-Starling's version [11 ]: 

2 3 
a ( p ) =  l + p + p  - p  (6) 

(1 _p)3  , 

and, second, by the version for a system of spherical particles near the state of dense packing following from 

Enskog's theory of dense gases [12 ] 

1 (7) 
G(/9) = 1 /Z '  

where p ,  is the concentration of the randomized state of dense packing. 
Certain strengths and weaknesses of these approaches to determination of G(p) for various concentrations 

are shown in [13 ]. In what follows both versions are used. 
The complete formulation of the problem of linear stability contains all the conservation equations (1)-(3), 

where the temperature 0 is an unknown function. The approximate approach based on considering the equilibrium 

state of the medium can be useful in this case. This state is physically similar to thermodynamic equilibrium of 
molecular gas, where all parameters of the flow except pressure are homogeneous. This idealization allows us to 
make some substantial simplifications reported in [8 ]. Moreover, if it is possible to neglect the convective derivative 

in the left-hand side of Eq. (3) and the work done against the pressure forces of the pseudogas particles in 
comparison with the source terms, 0 --- 0", which suggests that the temperature of fluctuations in heterogeneous 

states is equal to the known temperature in locally homogeneous states. In this case the mass and momentum 
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equations (conservation equations of dispersed phase) are sufficient for analysis of the stability, which decreases 

the order of the characteristic equation and, consequently, simplifies the study of singularities of the disturbance 
waves. 

Conditions of neutral stability will be determined accordingly for all determinations of the effective 
temperature of fluctuations, first for the equilibrium state, with Eq. (3). In this case the temperature is considered 

as the temperature of a fictitious homogeneous state of the disperse medium characterized by local average values 
of dynamic variables. Second, for the situation in which the temperature is assumed to be equal to a known value 
corresponding to locally homogeneous states, the function of average characteristics of average motion of the 

disperse system and physical parameters is 

0 = O* (8) 

and, finally, in the limiting case of a homogeneous flow with concentration Po. The effective temperature of 
fluctuations is assumed to be constant for this state and is a function of the concentration PO only 

0 = 0 0 . (9) 

In [9 ] for the temperature 0 = 0* with the assumption of statistical independence of particles and isotropy 

of their fluctuations due to interparticle collisions, the following formula was obtained: 

o* = e ~o , u) (u~) z . 

Here 

R(p u ) = l . 1 7 . 1 0 - a m ( p  u) 2 (P '2 )  
' ' 2 ' 

M (,o , u) =1- +1- ( d ln K (p) + xaga ) 
2 40 K (t9) u 2 ' 

1 
Ir 

An undisturbed homogeneous flow is described by a single relation determined from Eq. (2): 

2 ~cae0crg 
"0-- / q ,  K0=r(~ 

where u0 is the average velocity of the interphase slip. 
In the coordinate system of the average motion of the dispersed phase, from Eq. (1) we have 

eOu O - p w  e O u  O -  w 
r - -  $ ' U - ~ ' ~ d - - W - -  ~ ' 

t 
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U 
e 0 

Then the following expressions can be written for 0* and 0 o 

0* = R ( p ,  u)  (~oU0 - w) 2 , 

O0=Ro(eoUo)2, RO 1.17.10-3 M~0 (P '2) 10 
= 2 

e 0 

M O = ' 2  + d p  0 
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After linearization of Eqs. (1)-(3) in perturbations of the concentration and velocity of particles we obtain 

a system of equations for disturbances of the homogeneous flow 

Ow' = (10) ~ +po-  f f  o 
Ot 

ow' _ Oo o (po 60)) o_f__ oo' 
PO Ot = Op o Ox - P ~ 1 7 6  + 
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Go = G ~o0) ,  

/ 2 0 t  - GO00-~x + 2 ) e 0 -~-p '  - 2R 0 (1 - e0) w' eoag - 

where for the disturbance of the last term in the right-hand side of Eq. (3) we have 

1/2  
O' ] , (12) 

'1 ~176 (o*' - o ' )  = ! (o*' - o'). 
2 x/o o 2 

It is convenient here to use dimensionless variables 

1/2 

/ ( a . K  , PA =10 , 001 =O0/(galr ~ t 1 = t g , x 1 = x / ( w c ) ,  w 1 = w'/(gtca) 1/2  

Writing the system of equations (1 O)- (12) in these variables and considering the simplest disturbance wave, 

we obtain the characteristic equation for the dimensionless frequency co 1 = w / ( g / a k )  1~ in the form 

3 2 
091 + id11~Ol + (c22 + id22 ) to 1 + c33 + id33 = O, (13) 
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o Ro,o3O d I 2 
c2 = FK 0 dp o kl ' I 

0 2Poeoa 
d2 -- T M o k l '  

F = E:00". 

It is easy to understand that the number of imaginary roots of Eq. (13) for a certain fixed ~c corresponds 

to the number of transitions of stability intervals (or vice versa) into intervals unstable in P0. In order to determine 

the boundaries of these intervals by the standard procedure, the signs of the minors of the second, fourth, and 

sixth orders of the matrix composed of the coefficients of Eq. (13) are investigated. Simple but tedious calculations 

have revealed that the minors of the second and sixth order do not change signs within the whole concentration 

range, while the minor of the fourth order changes sign and gives the following condition of instability: 

2 
d22/dll  + d11c22 - d33 > O. 

(14) 

For approximation (8) 0 = 0", the characteristic equation is quadratic, 

2 * * * G )  o ,  ~o 1 + 2 (c 1 + idl) o91 - (c 2 + = 
(15) 

where 

Cl = -F--- GO ~ K 0 } R0 (1 - e 2) k l ;  

�9 0 �9 0 
d 1 = d 1 ; d2 = d 2 ; 

3 t �9 o Poeo a ~ dR 
= k 1 . C2 c2+--F-~o ~~ --~-P 0 

At real wave numbers kl the real and imaginary components of the complex frequency co 1 are written as 

�9 { 1 1 ( A 2 + B 2 ) l / 2 } 1 / 2  
ReCOl = - ci _+ ~ A + ~  

* { i 1 2 B 2 ) 1 / 2 } I / 2  
I m C O l = - d l  + _ - - ~ A + - ~ ( A  + 

,2 ~2 �9 �9 �9 �9 
A = c I - d + c 2 ,  B = 2 q d  1+ d 2. 

(16) 

It can be seen from (16) that  root (15) corresponding to the upper sign in the definition of Im col in Eq. (16) is 
the most critical as regards violation of stability and for this case the instability condition is of the following form: 

(2c~d* 1 + d*2) 2 > 4d?  (C*l 2 + c2). (17) 

A similar expression for the instability criterion can be obtained for the simplest case of Eq. (9), where 0 = 0 0. 

Omitting intermediate calculations we obtain 

0 2 0 2 o ( 1 8 )  
d 2 > 4d I c 2. 
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Fig. 1. Curves of neutral stability at various scale factors N (figures near the 

curves) according to (14), (15), and (18); the solid line corresponds to 

condition (17); the dashed line, to (18); the dotted-dashed to (14); the 

dotted, to definition (17) following Enskog's theory (7) in (4) and (5). 

We will consider stability of the limited flow for which the wave number cannot be less than a certain 

limiting value k* -" l-1, where l is the scale of the flow. We will introduce the scale factor N following naturally 

from the relations 

kl,  a (19) ~c - N x '  N = k2,a 2 k l .  = ~ k ,  7 x , N . 

Substitution of the complex N~c for the factor k~/x in Eqs. (14), (17), and (18) gives similar inequalities. 

Figure 1 shows families of curves of neutral stability obtained from Eqs. (14), (17), and (18) with Eq. (19) 

for different values of the scale factor N. For 0 = 0* and 0 = 0 o the regions of instability lie under these curves, 

while the model comprising all the three conservation equations has the region of instability limited by the lower 

branch of the curve of neutral stability which, unlike the first two curves, is loop-shaped. The dots also indicate 

the branches of the curves of neutral stability at high concentrations obtained by using the expression from [7 ] in 

calculations. The narrow region of stability lies to the right of these curves up to p .  = 0.6. 

It can be seen that as the flow dimension decreases (the parameter N increases), the stability region 

expands. It follows from the analysis of the curves in Fig. 1 that instability increases in the case of installations of 

large overall size with large linear scales, which is important in simulation of industrial installations. 

It should be noted that the present calculations also confirm the conclusion of some experimental studies 

[1, 3, 4 ] about flow stability in the range of high concentrations up to dense packing. In calculations this effect is 

more pronounced when Eq. (7) is taken into consideration in Eqs. (4) and (5). It can be seen that determining the 

function G(p) following the model of a smoothed volume in Enskog's theory results in the stability region adjacent 

to the densly packed state of the system for all the values, including those corresponding to overall sizes of 

installations as large as one desires. 
For particles suspended in gas, tc of the order of magnitude of 1000 and more, the curves obtained from 

Eqs. (8) and (9) (for the case 0 -- 0* and 0 = 00, respectively) and the upper branch of the curves calculated for the 
general case (with Eq. (3) for 0) almost coincide. Therefore, in the initial analysis of stability for gas suspensions 

only the relatively simple models 0 = 0* and 0 -- 00 can be used without substantial loss of accuracy in the 

calculations, which is especially important for engineering calculations. Because of this, it is possible to obtain 
sufficiently detailed information on the waves of maximum growth of such systems as well. 

In Fig. 2 the dimensionless wave number klm corresponding to maximum increment of growth of 

disturbances is plotted versus Po. This increment corresponds to the maximum Imco 1 in Eq. (16). In Fig. 3 the 
dimensionless frequency of disturbances Re co 1 in the instability region is plotted versus P0 for corresponding 
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Fig. 2. Plot of the dimensionless wave number versus P0 maximizing Im a~l 

from (16); the solid line corresponds to the definition of the effective 

temperature according to (8); the dashed line, to Eq. (9); the dotted line 

corresponds to definition (8) following Enskog's theory (7) in (4), (5). 

Fig. 3. Plot of Re ~o 1 versus P0 in the region of instability, whose growth 

increment is maximum; the solid line corresponds to the definition of the 

effective temperature according to (8); the dashed line correspond to the 

definition by (9); the dotted line corresponds to definition (8) following 

Enskog's theory (7) in (4), (5). 
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Fig. 4. Plot of dimensionless velocity of propagation of maximum growth waves 
Clrrt versus P0; the solid line corresponds to definition (8) of the effective 

temperature according to (8); the dashed line, to definition (9); the dotted 

line corresponds to definition (8) following Enskog's theory (7) in (4), (5). 

klm. In Fig. 4 the dimensionless velocity elm = [Re COl(klm)]/klm of propagation of maximum growth waves is 
plotted versus Po. In these figures the curves almost coinciding with model (8) are also shown for the case of Eq. 

(9) 0 = 00. 
All the curves are plotted for the value of ~c characteristic of gas suspensions, which was taken to be 1000 

in the calculations. 
The curve klm(P0) has a maximum in the range of concentrations close to Po -- 0.2. The most probable 

dimension of the bubbles initially formed in the unrestricted flow corresponds to it. As Po increases, the size of gas 
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cavities arising in the layer as a quantity inversely proportional to the wave number klm should grow. The same 

can also take place in the range of small concentrations at P0 < 0.2. Up to concentrations P0 = 0.45-0.5, the wave 

frequency col is an increasing function of P0. In the range of high concentrations, as the state approaches dense 

packing, where determination of G(p) by formula (7) based on Enskog's theory is more reasonable, the wave 

frequency decreases rapidly as the concentration rises. However, the rate of this decrease is lower than the rate of 

decrease in the wave number, which results in the appropriate increase in the velocity of propagation of the waves 
of maximum growth tending to infinity in the state of dense packing. 

In conclusion, it should be noted that stabilization of disturbances at small x characteristic of the particle 

suspensions in liquids is caused by the effect of viscous dissipation of the fluctuation energy in the flow induced 
by the hydrodynamic resistance to the fluctuation motion of particles which is included in the fluctuation energy 

transfer equation (3). However, in an infinite flow the stabilizing effect of viscous dissipation for these systems is 

important and the flow inevitably appears stable except for the cases where x is close to 1. However, it cannot be 

concluded that the results of calculation of disturbance characteristics by models (8) and (9), on the hand, and by 
the general model including all three conservation equations (1)-(3), on the other, are adequate, as was expected. 

This requires an additional series of calculations with characteristic equation (13) obtained for the equilibrium state 

with Eq. (3), which can be the object of an independent study. 

N O T A T I O N  

a, particle radius; f, hydraulic force exerted on particles by liquid; k(p), function introduced in (2); G(p), 

lbanction introduced in (4); k, wave number; m, particle mass; n, numerical concentration of particle; P1, particle 

pressure; v, liquid velocity; w, particle velocity; u, relative velocity of the liquid; x, vertical coordinate; e, porosity 

of the bed of particles; p, volume concentration of the dispersed phase; co, frequency; 0, effective temperature of 

the gas of particles;/~i, viscosity of the gas of particles; ~, resistance coefficient of a particle; <p,2>, variance of 
fluctuation of the concentration; Re co, Im co, real and imaginary components of the frequency; N, scale factor 

introduced in (19); dll, d22, c22, c33, d33, dl, d2, c2, coefficients introduced in (13) and (16). Subscripts: *, refers 
to parameters corresponding to equilibrium states; 0, refers to parameters of homogeneous states; ', refers to 

fluctuations; 1, refers to dimensionless quantities. 
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